Tuning-free ridge estimators for high-dimensional generalized linear models
نویسندگان
چکیده
Ridge estimators regularize the squared Euclidean lengths of parameters. Such are mathematically and computationally attractive but involve tuning parameters that need to be calibrated. It is shown ridge can modified such avoided altogether, resulting estimator improve on prediction accuracies standard combined with cross-validation.
منابع مشابه
Closed-form Estimators for High-dimensional Generalized Linear Models
We propose a class of closed-form estimators for GLMs under high-dimensional sampling regimes. Our class of estimators is based on deriving closed-form variants of the vanilla unregularized MLE but which are (a) well-defined even under high-dimensional settings, and (b) available in closed-form. We then perform thresholding operations on this MLE variant to obtain our class of estimators. We de...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملSCAD-Ridge Penalized Likelihood Estimators for Ultra-high Dimensional models
Extraction of as much information as possible from huge data is a burning issue in the modern statistics due to more variables as compared to observations therefore penalization has been employed to resolve that kind of issues. A lot of achievements have already been made by such techniques. Due to the large number of variables in many research areas declare it a high dimensional problem and wi...
متن کاملProjection Estimators for Generalized Linear Models
We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We found a bound for the maximum asymptotic bias of the projection estimator caused by a fraction ε ...
متن کاملGeneralized orthogonal components regression for high dimensional generalized linear models
Here we propose an algorithm, named generalized orthogonal components regression (GOCRE), to explore the relationship between a categorical outcome and a set of massive variables. A set of orthogonal components are sequentially constructed to account for the variation of the categorical outcome, and together build up a generalized linear model (GLM). This algorithm can be considered as an exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2021
ISSN: ['0167-9473', '1872-7352']
DOI: https://doi.org/10.1016/j.csda.2021.107205